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Application of the method of discrete slanting horseshoe vortices to the linear
steady state problem of stable flow past a wing of finite span and complex plan
shape, and of a schematized aircraft with straight edges is considered. An inte-
gral equation is obtained for the vortex layer intensity on a wing. It is shown
that the quadrature sums that appear in applications of this method converge to
the integral present in the integral equation, A method of solving the indicated
equation numerically is given. It is shown that the specified class of solutions
of integral equation for vortex layer intensity is distinguished only by the relat-
ive distribution of sets of discrete vortices and reference points,

The method of discrete vortices [1 — 3] provides a unique tool for investigating
linear and nonlinear problems of steady and unsteady flow of inviscid incompressible
) fluid past thin 1ift airfoils, The continuous vort-
Adz,.2) 2 ex layer which simulates the lift airfoil is re-
1 Uy placed by a system of discrete vortices. Points,

referred to as design points, at which conditions

YRERN of impenetrability are satisfied are selected on
the lift airfoil. The problem reduces to solving
I‘(\ a system of linear algebraic equations for un-
known circulations of discrete vortices.

. The considered problem of flow has several
Bz, ) solutions distinguished by the behavior of the
vortex layer intensity in the vicinity of [the air-
foil] edges. The sought solution is obtained by
suitable selection of the relative position of sets

Fig, 1
8 of discrete vortices and design points. The
mathematical basis of application of this method in the linear problem of steady flow

past a thin wing of infinite span was given in [4] for circulation and in [5] for circula-
tion-free flows,
Let us consider the oblique horseshoe vortex II;; of constant intensity ' consist-

ing of the attached vortex (4,, 4,) whose ends A, and A, are determined in the

zyz -system (direction of the Oz -axis coincides with that of the unperturbed stream)
by coordinates (z;, 0, 3;) and 2z, 0, z,) respectively, and of two rectilinear free vor-
tices (4;, + 20) and (4,, -~ >) mnning off the ends of the attached vortex and direct-
ed along the unperturbed streamvelocity U, (Fig.1). We write the equation of tne )
vortex line (4,, 4;) as =z (z) = a + zb. Using the Biot-Savart formula we obtain for
velocity Vi3 induced by vortex Il at point Pg (o, %) the formula
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Vig=T (v* — v / (4n) (6]

' = (bt [(m = 2+ (20— 5% WA GG — 5], k=1, 2
A=z —a— z5b

+

Let us now consider the problem of flow past a canonical trapezoid which may be
considered to be a half-wing whose edges are defined by z =0 and z = b, which
we shall call side edges, while the edges defined by equations =z. (s) = &° + zb° and

z4 (z) = a! + sb!, will be called the leading and trailing edges, respectively.
Velocity U, of the stable stream at some distance from the canonical trapezoid o
is directed along the positive axis Oz.

The rectangular wing is a particular case of the canonical trapezoid ¢ . One of
its side edges may be reduced to a point.

We represent the lift vortex layer on o by a system of oblique horseshoe vortices
[1]. Let D =[0,1] X [0, ] be a rectangle in the plane 0z's. We divide segment

[0,1] of the Oz -axisin n + 1 segments [z, z )] (i=0,1,..., 7
of length  5;, and segment {0, !] of the Oz ~axisin N segmeats [z, 2y} (k= 1,
2, ...+ N) oflength h, Segments [z/',z;,'] and [zm:z,,,] are divided in
half by points z,i' and zyy, , respectively.

Let us consider the mapping F of rectangle D on o, defined by formulas

@) =3z, @)~z @ +2.(), z=2 (2

The Jacobian of mapping F is of the form J (2) = =4 (3) — 2. (3).

Let Ak (Zikr 2k)s Aim (Tgms Som) and Ajm (Tjm» 30m) be the respective images of
points

Apd (2h 2)y Aim® (@ Zom)y Ajm® (Zoj*s Zom)

Let us consider the oblique vortex IT;; with attached vortex (4;;, 4;; + 1). Since
z (2t 2) = a (2}) + zb(2Y), a (2}) = a° 4 2! (@' — @°), and & (z)) = b° +~ = (B —
b°), the equation of the line of the attached vortex (A;x A4; ;) is of the form z;
(2) = z (z;%, 5). The intensity of vortex [I;; is determined by formula ['jx = Pyxh,
Pix = J (o) ¥ Zyms Zom)s i =1, .. ., n, k=1, .., N. In this formula ¥ (z,2) is
the component on axis z of the vortex layer intensity at point 4 (2, 2) of the canoni-
cal trapezoid o . The velocities induced by oblique vortices are determined at the
design points Pim (Zjm: Zom) that are images of points Pjm! (%) Zom). We denote
the velocity induced by the oblique vortex Il;x at point Pjm by Vim'. Velocity
Vim induced at point Pj,, by the complete system of oblique vortices is determined
in conformity with formula (1) and relationship Zim= @ (Zoj') — Zomb (oj')} by form-
ula

3 n A
4V, = 12' Civ Ci= 3 ulAimh (3
=} f=x]
R ik < i, N+1
Co= Y D (P — Pi ) Ajm 21s Cs =i2| Pinlim P
fm] K=y =1

A = (s 4 (@ — TR + (o — 28 s (Zomm — )]

)"jmi =z —a (z1) — zgmb (a:w.l) =J (Zypn) (zojl —z1)

Let us assume that fuaction &y (z (23, ¢),2)/ s belongs to class H* on the rectan-
gle D = [0,1]1 X [0, 1] of plane Oz'z. Function ¢* (2%, z) belongs to class A* [5]
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on the rectangle [a, ] X [c, dl if it is of the form ¥* (2% 2) = ¥ (1, 2) % (21 — a)™*

(=) =)@ =), 0V, <1, k=12 and Y 2)eH on |a
bl X [e, d], 1i.e. it satisfies the Holder condition over the totality of variables [6]. Then

applying the results of [4] and extending those for the two-dimensional singular integr-

al of the Cauchy type [5], we find that for 7 — o0 and N — o0 with 0 < § < byl
hy < T < + oo, equality (3) for velocity V (z,, z,) at point Py (z,, z,) assumes

the form

3
4 (x4, 2¢) E (4)
) =1
I, = S A(h,z,z2..0, 3) 9 (z, 0)dat
0
1!
12=SSA(A z, 1,2, -0)[ ¢ (=, )]dzld:
00
1

I, = S A, z, 2,1, 5) @ (2, 1)dat
0

A =z, 29 2, 20) = (A + [(2g — 2)% + (20 — 2)21)"/2/ [A (2 — 2)]

A =17 (z)zg' — 2Y), 2= z (2", 20), 2z =z (2, 2)

Applying now the concept of integral in Adamard's meaning of the finite part [7],
taking into account the relation ¢ (z,2) = v (z (z%, 2),2)J (z) , and passing to variables
z and z using the substitution of variables defined by mapping F, for the intensity

¥ (2, 2) ((zos 20) € 0) we obtain the equation

1 1 Ty —Z
-E(SOS)? « ? (20— 2)2 (1 + V(zc— P4 (50— :)2)dz de=V (2o Zy) (5

To determine the numerical value of intensity y (z, z) of the vortex layer at des-
ign points we consider the system of linear algebraic equations

n N
N Ve =V i=1.c.on, m=1,..., N
i=1 k=1
where Vjm is assumed known at points Pjm on the basis of the condition of impenetr-
ability at surface o . The sets of vortices{{d;1, 4, ;). i=1,..,n; k=1,..., N}
and design points {Pjm, j=1, ..., n, m=1,,.., N} are arranged in such manner
that the vortices are closest to the leading edge and the design points closest to the
trailing edge.
For analyzing the behavior of ¥ (z, z) close to the leading and trailing edges we
rewrite system (6) with allowance for (3) in the form

(%)

-2 Zy i Zom) O 58) T =40V + S (N
i=1
1
Sim =12 s, Si= 2, @i A” —(D” Ly
=] =1

n N
§t= 3 E (@— P p-p) A, — @) iy
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i, N+1 i, N+
2 ‘pl\f A'm —"d)jm 1)”'1
i==1

O}m'—l“!)m—:kle(x‘il)/[}“jmi(:()m—Zk)]
BBz =1+82(zY), j=1,....ni m=1,..., N

According to {4] for each fixed m we have

/l—xl 3
27 (Fims Zom) 8 (=) =___l/ Z 1—101x

h
@4V, + S );—1-:1-;:;-1-—1—(1(& m); i=1,....,n, m=1,..., N

where & (i, m) — 0 uniformly for all (z;*, zgm) =[8,1 — 8] X [§,1 — 8] and any
number & > 0.

System (8) shows that when system (6) has a solution, function v (z, z) which is
the limit of that solution for 7 — o and N —» oo satisfies forany z = (0,1 the
relations ¥ (2 @ 2), 2) Ly = 7 (24 (5), 2) = 0

Yz (2t 2), 2) L g =V (2-(2), 2) =0

Let us now consider as the lift airfoil 0 a wing of complex plan form with straight
edges or a schematized aircraft (3],

We assume that o lies in the Ozz -plane, and draw through the contour comer
points straight lines parallel to the Oz -axis, The total surface o is then divided in~
to canonical trapezoids o, ¢ = 1, . . ., p which interect only along the side edges.
Let the side edges of o, be defined by the equations z= I} and z= [ andthe
leading and trailing edges by the equations z_® (z) = a, + zb,, and z,% (s) = a1 +
zb,l, e =1, ..., p, respectively,

Let us consider p specimens of planes 0z°z and of rectangles D, = [0, 1] X

i1, 2] in each of these. We divide segment [0, 1] of the Oz® -axis by points z;°,
zyi=1,.. ., B, foragiven e) atpitch h® and segment [l L*1 by points 3%,
2> k=1, ..., N, atpitch h?* If o, and o, lie along the stream behind each
other, ie, I f=1%k =1,2, weset &®=nh," and, consequently, N,= N,.
The last condition is imposed in order to have coincidence of lines of free vortices un-
ning off Og and O, .

The oblique vortices I1;;® on trapezoid o, are deterrmned using mapping F, of

the rectangle D,on ¢, defined by relations 2 (2% 2) = 2* [,% (3) — 2.° (3)] +

z.%(s) and z = z. The Jacobian of transformation F, is of the form J, () = z,° (z) ~
z_® (2).

Taking into account the formula

Vi = Tw (2 (2), Toy 2, Zg) / (411) (9

Zy
w (@ (2), %0, 210 70 )= § R (2 (2), 20, 2, ) ds

Z;

Ty — % (2)
Rz (2) 50 52 5= o (”‘ % — 2 (7) +(zo—’)a)

which follows from (1) we obtain for velocity V;,® induced at point Pjm° (Zim12em®)
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of trapezoid o, by the total system of oblique vortices on ¢ the foimula
I L (10)
CELr LD MPINIL -
v=], ‘\9‘5 i=1 k—l
w}’;rzjm =w (z v( )’ m’ “k ’ "k+1’ "Om) 1iv (z) =z (ziv’ z)
where Vjm"® is the velocity induced at point P;n® of trapezoid 0, by the system
of discrete vortices on trapezoid 0,,. and z;" (s) is the equation of the line of vortex
(4;5", A] k4y) attached to that trapezoid whose end coordinates are (235" = z;"(zy),
) and Ty = &' (Fpan)s Zga)-

Let us assume that function v (z (2% z), z) belongs to class H* on rectangle D,
Applying to Vim®® a reasoning similar to that used previously in the case of the canon-
ical trapezoid, noting thatfor v==e either z;—2z or A, = z(z,°, z;) —

a (z¥) — 20 (z%)  do not change signs for z, = (I}, I,?) and ze[L} L2, and
passing to limit for ny — >, Ny — o0, 0 <8 < hy®/ hy% k2l by’ S T <+ 0,8,v=
1,..., p; k=1, 2, for the velocity V (zo, 2¢) at point Po (%o, 20) of the lift airfoil

we obtain
V(24 20) = Z \S (z, 2) R (x, 24, 2, 2)dz dz 1y

()
(Oy:

Formula (11) implies that Eq. (5) is also valid for the considered lift airfoil 0 of
complex shape,

To determine the numencal value of solution 7 (z, z) at design points P;jp,®, & =
1, ...p(=14, ..., m=1, » N, fora given e) of surface 0 it is necess-
ary to consider the system of linear algebraic equations

Ny
2.| 2! 21 Vthm= Vzgm

v=1 i=1 k=1

(12)

where Vig,, is the velocity induced by the oblique vortex II;” of trapezoid o,
at point Pj;,° of trapezoid O
The properties of system (12) imply, as before, that function 7 (z, ;) satisfies the

relations
7(22(2),2) =0, 7y (25(2),2)= 00, z&(i}, L2)

REFERENCES

1, Belotserkovskii, S. M., Thin Lift Airfoil in a Subsonic Stream of Gas,
Moscow, "Nauka", 1965,

2, Belotserkovskii, S, M,, Skripach, B, K,, andTabachnikoyv,
V. G,, The Wing in an Unsteady Stream of Gas, Moscow, "Nauka" 1971,

3, Belotserkovskii, S. M, and Skripach, B, K., Aerodynamic Deriv-
atives of Aircraft and Wing at Subsonic Speeds, Moscow, "Nauka", 1975,

4, Lifanov, I, K, and Polonskij, la, E., Proof of the numerical method of
"discrete vortices" for solving singular integral equations, PMM, Vol, 39, No, 4,
1975,



206 L. K. Lifanov

5. Lifanov, I, K,, On singular integral equtions with single-valued and multiple
integrals of the Cauchy type, Dokl, Akad. Nauk, SSSR, Vol 239, No. 2, 1978,

8. Muskhelishvili, N, I, Singular Integral Equations. Moscow, "Nauka",
1968,

7. Eschli, H, andLendahl, M., Aerodynamics of Wings and Fuselages of
Aircraft, (Russian Translation). Moscow, "Mashinostroenie”, 1969,

Translated by J, J, D.




